logo
> 상품 > 알루미늄 금속 분말 >
High Strength Weight Ratio AlSi10Mg Aluminum Alloy Powder For Additive Manufacturing

High Strength Weight Ratio AlSi10Mg Aluminum Alloy Powder For Additive Manufacturing

원래 장소:

중국

브랜드 이름:

Zoli

인증:

ISO CE

모델 번호:

Alsi10mg

문의하기
조회를 요청하다
제품 세부 정보
비등점:
2467 °C
물의 용해도:
불용성
전기 전도성:
38.2MS/분
벌크 밀도:
20.5-3.5g/cm3
열전도율:
237 와트/mK
분자량:
26.98 g/mol
저장 조건:
시원하고 건조한 장소에 보관하십시오
재료:
알류미늄
안전 정보:
삼키면 피부와 눈 자극을 유발합니다
원산지 국가:
중국
연장:
사용 된 특정 금속 합금에 따라 다릅니다
소결 분위기:
질소 또는 수소
특징:
흰색 가루 슬리버
위험한것:
가연성
지불 및 배송 조건
최소 주문 수량
1kg
포장 세부 사항
진공, 플라스틱 및 철 배럴
배달 시간
30 일 이내에
지불 조건
L/C, T/T, Western Union
공급 능력
연간 500톤
제품 설명
1. Overview and Introduction

AlSi10Mg is a near-eutectic aluminum-silicon-magnesium alloy that is arguably the most widely used and well-understood aluminum powder in the field of metal additive manufacturing (AM), particularly in Laser Powder Bed Fusion (LPBF) processes. Its popularity stems from an excellent combination of good printability, high strength-to-weight ratio, thermal properties, and cost-effectiveness.

Originally developed for traditional casting (where it is known as A360), its composition is exceptionally well-suited for the rapid solidification characteristics of 3D printing, resulting in fine, stable microstructures and superior mechanical properties compared to its cast counterpart.

2. Chemical Composition (Typical Weight %)

The composition is precisely controlled to ensure optimal performance. A standard composition conforming to standards like ASTM B928 / AMS 4345 is:

Element Content (%) Role and Effect
Aluminum (Al) Balance Base metal, provides the matrix.
Silicon (Si) 9.0 - 11.0% Primary alloying element. Lowers melting point, improves fluidity, reduces hot cracking, and enhances hardness and strength through dispersion strengthening.
Magnesium (Mg) 0.2 - 0.45% Enables precipitation hardening (age hardening). Forms Mg₂Si precipitates during heat treatment, significantly increasing strength.
Iron (Fe) ≤ 0.15% Impurity. Kept low to prevent the formation of brittle intermetallic phases that can reduce toughness.
Manganese (Mn) ≤ 0.45% Sometimes added to modify iron-containing phases, making them less detrimental.
Other Impurities ≤ 0.05% each Elements like Copper (Cu), Zinc (Zn), Titanium (Ti), etc., are strictly controlled to ensure consistent material behavior and final properties.
3. Key Characteristics and Properties
  • Excellent Printability: The Al-Si eutectic system has a relatively wide freezing range, which minimizes residual stresses and the tendency for hot cracking (solidification cracking) during the LPBF process. This makes it one of the most forgiving and reliable aluminum alloys to print.
  • Good Strength and Hardness: In the "as-printed" condition, it offers decent mechanical properties. However, its true potential is unlocked through heat treatment (see Section 5).
  • High Thermal Conductivity: Exhibits good thermal conductivity, making it suitable for applications like heat exchangers, cooling plates, and electronic enclosures.
  • Low Density (~2.67 g/cm³): Provides a high strength-to-weight ratio, which is critical for aerospace, automotive, and robotics applications where weight savings are paramount.
  • Good Corrosion Resistance: Offers respectable resistance to atmospheric corrosion, similar to other aluminum-silicon alloys.
4. Powder Characteristics (Crucial for AM)

The quality of the powder is as important as its chemical composition. Key powder properties include:

  • Particle Size Distribution (PSD): Typically ranges from 15 to 63 microns for standard LPBF systems. Some systems may use a tighter distribution (e.g., 20-45 µm) for finer detail resolution.
  • Morphology: Particles must be spherical to ensure good flowability, which is essential for creating a uniform, dense powder bed layer after layer. Non-spherical particles can cause poor recoating, leading to defects.
  • Flowability: Measured by Hall Flowmeter (e.g., < 35 s/50g). Good flowability ensures a consistent and reliable printing process.
  • Apparent Density/Tap Density: High density (>50% of theoretical) indicates good packing efficiency, leading to higher final part density.
  • Low Moisture and Oxide Content: Powder must be stored and handled in a dry, controlled atmosphere (often in an argon environment) to prevent oxidation and hydrogen pickup, which can cause porosity in the printed parts.
5. Microstructure and Heat Treatment
As-Printed (As-Built) Condition:

The rapid cooling rates (~10^5 - 10^6 K/s) in LPBF create a very fine, non-equilibrium microstructure. It consists of a supersaturated aluminum matrix (α-Al) with an extremely fine cellular/dendritic network of silicon. This fine structure contributes to the good "as-printed" strength.

Heat Treatment (Post-Processing):

Heat treatment is used to tailor the mechanical properties for specific applications.

  • Stress Relief (T1): A low-temperature anneal (~300°C for 2 hours) to reduce internal residual stresses from the build process without significantly altering the microstructure.
  • Direct Aging (T5): The part is artificially aged (e.g., 160-180°C for 4-12 hours) directly after printing. This precipitates fine Mg₂Si particles within the matrix, increasing strength and hardness while minimizing distortion.
  • Solution Heat Treatment and Aging (T6): This is the most common treatment for maximum strength. The part is solutionized at a high temperature (~520-540°C), quenched, and then aged. This process coarsens the silicon network (reducing ductility slightly) but maximizes precipitation hardening, yielding the highest tensile strength and hardness.
6. Applications

AlSi10Mg is versatile and used across numerous industries:

  • Aerospace: Bracket components, satellite parts, drone frames, and non-structural cabin components.
  • Automotive: Lightweight brackets, engine components (e.g., intake manifolds), heat exchangers, and custom hydraulic fittings.
  • Industrial: Robotic end-effectors, jigs, fixtures, and lightweight automation components.
  • Thermal Management: Heat sinks, cold plates for electronics, and cooling channels for molds (conformal cooling).
  • Prototyping: Functional prototypes that require metal-like properties for testing.
7. Advantages and Limitations
Advantages:
  • Excellent printability and high build success rates.
  • Good specific strength (strength-to-weight ratio).
  • Favorable thermal properties.
  • Widely available and well-documented.
  • Cost-effective compared to other high-performance AM alloys (e.g., Scalmalloy®).
Limitations:
  • Moderate Ductility: Especially in the T6 condition, elongation at break is lower than some wrought aluminum alloys.
  • Not for High-Temperature Applications: Mechanical properties degrade significantly above ~200°C due to the coarsening of strengthening precipitates.
  • Anisotropic Properties: Mechanical properties can be slightly different in the vertical (build) direction compared to the horizontal direction due to the layer-by-layer nature of AM.
High Strength Weight Ratio AlSi10Mg Aluminum Alloy Powder For Additive Manufacturing  0 High Strength Weight Ratio AlSi10Mg Aluminum Alloy Powder For Additive Manufacturing  1

문의사항을 직접 저희에게 보내세요

개인 정보 정책 중국 좋은 품질 유성식 볼 밀 기계 공급업체. 저작권 © 2025 Guangzhou Zoli Technology Co.,Ltd. . 판권 소유.