logo
> 상품 > 철금속 분말 >
Ultrafine Nano 316L Stainless Steel Powder for Scientific Research

Ultrafine Nano 316L Stainless Steel Powder for Scientific Research

원래 장소:

중국

브랜드 이름:

Zoli

인증:

ISO CE

모델 번호:

SS316

문의하기
조회를 요청하다
제품 세부 정보
분말 포장:
진공 밀봉
화학식:
Fe
밀도:
7.87 g/cm3
독성:
무독성
비등점:
2861 ° C
효소 번호:
231-096-4
느슨한 포장 밀도:
4.0-5.5 (g/cm3)
입자 크기:
1-5 미크론
색상:
실버 회색 가루
가연성:
불연성
원산지 국가:
중국
벌크 밀도:
20.5-3.5g/cm3
비 표면적:
1-3 m2/g
전기 전도성:
9.71 × 10^6 s/m
생산 방법:
원자화 방법
지불 및 배송 조건
최소 주문 수량
1kg
포장 세부 사항
진공, 플라스틱 및 철 배럴
배달 시간
30 일 이내에
지불 조건
L/C, T/T, Western Union
공급 능력
연간 500톤
제품 설명
1. Definition and Key Characteristics

This material consists of 316L stainless steel particles where at least one dimension falls within the nanometer scale (1-100 nm) or the powder is classified as "ultrafine" (typically 100 nm to 1 micron). It is characterized by its exceptionally high surface area and unique nanoscale phenomena.

Particle Size: Typically specified as a D50 < 1 micron (1000 nm), often with a significant fraction in the 50-500 nm range. True nanopowders will have a D50 < 100 nm.

Morphology:

Can vary based on the synthesis method. Common forms include:

  • Spherical: Ideal for packing and uniform sintering.
  • Flake-like: Used in conductive inks and coatings.
  • Irregular: May result from certain chemical methods.

Key Property - High Surface Area to Volume Ratio: This is the most critical differentiator from conventional powders. It drastically increases chemical reactivity, lowers sintering temperatures, and can alter magnetic, catalytic, and mechanical properties.

Ultrafine Nano 316L Stainless Steel Powder for Scientific Research 0
2. Common Synthesis Methods (How it's Made for Research)

Producing nano 316L powder is complex and costly, often done in small batches for research.

Chemical Methods:
  • Sol-Gel Synthesis: Metal precursors (salts of Fe, Cr, Ni, Mo) are dissolved, gelled, and then reduced under hydrogen at high temperatures to form the alloy powder. Allows for excellent chemical homogeneity.
  • Chemical Reduction: Salts of the constituent metals are reduced in a liquid solution using a strong reducing agent. This can produce very fine, sometimes agglomerated, particles.
Physical Methods:
  • Laser Ablation: A bulk 316L target is vaporized by a high-power laser in a controlled atmosphere (e.g., argon). The vapor condenses into nano-sized particles. This produces very high-purity, spherical powders.
  • Spark Erosion: Electrical sparks between two 316L electrodes in a dielectric fluid erode the material, generating fine spherical particles.
  • Advanced Gas Atomization with Ultra-Fine Classification: Specialized gas atomization can produce a small fraction of ultrafine powder, which is then meticulously separated using cyclones or classifiers.
3. Key Research Applications

The unique properties of nano 316L powder open doors to novel research areas:

Fundamental Materials Science:
  • Sintering Studies: Investigating the mechanisms of field-assisted sintering (FAST/SPS) or flash sintering at dramatically reduced temperatures and times due to the high driving force for densification.
  • Size-Effect Studies: Exploring how mechanical properties (hardness, yield strength), magnetic behavior, and diffusion change at the nanoscale.
Advanced Manufacturing & Nanotechnology:
  • Nano-Metal Injection Molding (Nano-MIM): Developing micro-components with ultra-fine features and ultra-smooth surface finishes for micro-electromechanical systems (MEMS) and micro-robotics.
  • Fabrication of Nanostructured Bulk Materials: Consolidating nano-powders to create bulk components with nano-grained microstructures, which can exhibit exceptional strength and radiation resistance.
Biomedical Engineering:
  • Drug Delivery and Hyperthermia: Functionalizing the nanoparticles to attach therapeutic drugs. Their magnetic properties allow them to be guided to a target and heated by an alternating magnetic field for cancer treatment (magnetic hyperthermia).
  • Bio-imaging: Using nanoparticles as contrast agents for advanced imaging techniques like MRI.
  • Nanostructured Implant Coatings: Creating bio-compatible, antibacterial, and enhanced osseointegrative coatings on conventional implants.
Energy and Catalysis:
  • Catalyst Support: Using the high surface area as a support for other catalytic materials in reactions like hydrogen evolution or oxygen reduction.
  • Battery and Fuel Cell Research: Investigating its use as a conductive additive or catalyst in next-generation energy storage and conversion devices.
4. Critical Handling and Safety Considerations for Labs

Handling nano-powders requires stringent safety protocols beyond those for conventional powders.

  • Pyrophoricity & Explosivity: Ultrafine metal powders are often highly pyrophoric. They can spontaneously combust upon exposure to air. They must be stored and handled under an inert atmosphere (e.g., in an argon-filled glovebox).
  • Health Hazard (Nanotoxicology): Nanoparticles can be inhaled, penetrate biological barriers, and pose significant, not yet fully understood, health risks. Labs must use:
    • Proper Engineering Controls: Class II or III Biosafety Cabinets or gloveboxes.
    • Personal Protective Equipment (PPE): Respirators with P100 filters, gloves, and lab coats.
  • Storage: Must be stored in sealed, inert-gas-filled containers, clearly labeled as nanomaterial and pyrophoric.
5. Typical Experimental Parameters & Characterization

When working with this material, researchers will typically measure:

  • Particle Size & Morphology: Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS).
  • Surface Area: Brunauer-Emmett-Teller (BET) surface area analysis.
  • Crystalline Structure: X-ray Diffraction (XRD).
  • Chemical Composition: Inductively Coupled Plasma (ICP) spectroscopy, Energy-Dispersive X-Ray Spectroscopy (EDS).
  • Sintering Behavior: Dilatometry to study shrinkage during heating.
Ultrafine Nano 316L Stainless Steel Powder for Scientific Research 1

문의사항을 직접 저희에게 보내세요

개인 정보 정책 중국 좋은 품질 유성식 볼 밀 기계 공급업체. 저작권 © 2025 Guangzhou Zoli Technology Co.,Ltd. . 판권 소유.